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1 Principal Component Analysis

PCA Input: a mxn matrix of m metagenomes and n functions/taxa
PCA Output: a 2 or 3-D plot of metagenomes

Principal Components Analysis is an ordination tool for exploratory data analysis
which reduces the dimension of a data set such that it can be visualized in a 2 or 3-D
plot [1][2]. The method creates synthetic variables which are linear combinations of
the original variables, and can be plotted on their corresponding orthogonal principal
axes. The principal components can explain much of the variation found in the data
set. The most useful feature of PCA, compared to other ordination techniques, is
that it can show what variables drive the separation of objects in the plot.

When comparing metagenomes, we define the objects in ordination as metagenomes,
and the variables as functional or taxonomic classifications. We refer to the list of
gene counts in either a functional (Pfam, COG, etc) or taxonomic (class, family,
etc.) classification as a metagenome’s profile. We are interested in seeing what
metagenomes cluster together, which suggests profile similarity. We are also inter-
ested in viewing gradients, which are varying aspects of the environment related to
the profiles.

It is difficult to prove that metagenomic data sets meet the assumptions needed
for appropriate use of PCA. Functions/taxa need to be linearly related. For the prin-
cipal axes to be an informative summary of the data, a change in one function/taxon
must result in a linear change of another function/taxon. Also, the variables need to
be normally distributed. With the prevalence of zeros in metagenome profiles, this
assumption is not met in most cases.

However, PCA is a geometric technique and not a statistical test. So, even though
the assumptions are not strictly met, it is possible to find meaningful information in
the ordination. If the first few principal components explain much of the variance,
PCA is an informative representation of the objects. As an exploratory data tool
only, PCA in IMG can be used to form hypotheses that can be later tested in prop-
erly designed statistical studies.

In order to account for the large variance in metagenome profiles, every metagenome
is normalized by dividing each gene abundance by the total number of genes in the
metagenome. The normalized abundances for each metagenome sum to 1. For ex-
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ample, if metagenome A has profile 0,100,50,150, and metagenome B has profile
0,50,25,75, both profiles will be normalized such that they have equal profiles of
0,0.33,0.17,0.5.

Although the normalization reduces the Euclidean distance between metagenomes
that have similar profiles but vastly different gene sizes, it does not solve the dou-
ble zeros issue [3]. If two metagenomes have similar absence profiles, meaning they
have no genes from the same functions/taxa, they will possibly be close together
in the PCA ordination. However, it is likely that an absence of a function/taxon
in a metagenome is due to lack of read depth and/or coverage [4]. We are more
interested in viewing what metagenomes are more similar based on their present
functions/taxa, in which case PCA is not the most appropriate tool for visualizing
metagenomic data sets.
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2 Principal Coordinates Analysis

PCoA Input: a nxn matrix of metagenome dissimilarities calculated from a mxn
matrix of m metagenomes and n functions/taxa
PCoA Output: a 2 or 3-D plot of metagenomes

Principal Coordinates Analysis (PCoA) [5][6] is an eigenanalysis algorithm like
Principal Component Analysis (PCA). Whereas PCA only uses the Euclidean dis-
tances between objects to perform an ordination in reduced space, PCoA performs
an ordination on any user-selected dissimilarity measure. If Euclidean distance is
chosen, PCoA gives the same solution as PCA. If an appropriate measure is selected,
no data assumptions need to be verified before analysis.

One of the best measures to use with raw abundances is the Bray-Curtis dis-
similarity coefficient [3][7], which we use to measure the compositional dissimilar-
ity between two metagenomes. If we have a mxn abundance matrix X, with m
metagenomes and n functions/taxa, we calculate the Bray-Curtis dissimilarity be-
tween metagenome j and metagenome k as [8]:

djk =

∑n
i=1 |xij − xik|∑n
i=1(xij − xik)

If two metagenomes have exactly the same profile, their index is 0, which is the
smallest (most similar) Bray-Curtis index. If two metagenomes share no functions or
taxa in their profile, their index is 1, representing the largest measure of Bray-Curtis
dissimilarity.

The Bray-Curtis index is a semi-metric distance, meaning it does not exhibit the
properties of the triangle inequality. Thus, negative eigenvalues may result from the
PCoA. However, if the negative eigenvalues do not occur in the first few principal
coordinates, the ordination may be meaningful in some cases [3].

Although performing PCoA with the Bray-Curtis index gives a much more ap-
propriate representation of the relationship between metagenome profiles than PCA,
it is difficult to recover the functions/taxa contributing to the principal coordinates.
Unlike PCA, the new variables are complex functions of the original variables, not
linear combinations.
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PCoA in IMG is a data exploratory tool only, and may be used to form hypothe-
ses that can later be tested in properly designed statistical studies.
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3 Non-metric Multidimensional Scaling

NMDS Input: a nxn matrix of metagenome dissimilarities calculated from a mxn
matrix of m metagenomes and n functions/taxa
NMDS Output: a 2 or 3-D plot of metagenomes

Non-metric Multidimensional Scaling (NMDS) [9][10][11][12] is an iterative ordi-
nation technique that preserves the rank order correlation between objects, rather
than their linear correlation. It is better than PCoA (Principal Coordinates Analy-
sis) at representing relationships between objects because of this model flexibility [3].
However, since it is an iterative algorithm two problems may arise. First, there is no
guarantee that the solution found is best, as the algorithm could return on a local
minimum. Second, many iterations on large matrices is computationally intensive,
so NMDS can take an extended amount of time to return a solution.

Before running NMDS, both the dissimilarity metric and the number of dimen-
sions of the solution need to be chosen. Unlike PCA and PCoA, which find solutions
in n and n-1 dimensions respectively, NMDS can find a solution in 1 to n-1 dimen-
sions. NMDS in IMG is displayed in 3 dimensions because the solution is easily
viewed in a 3-D plot, not because 3 dimensions necessarily gives the best solution.
Like PCoA, NMDS has no data assumptions, and can be performed on any dissimi-
larity measure.

One of the best measures to use with raw abundances is the Bray-Curtis dis-
similarity coefficient [3][7], which we use to measure the compositional dissimilar-
ity between two metagenomes. If we have a mxn abundance matrix X, with m
metagenomes and n functions/taxa, we calculate the Bray-Curtis dissimilarity be-
tween metagenome j and metagenome k as[8]:

djk =

∑n
i=1 |xij − xik|∑n
i=1(xij − xik)

If two metagenomes have exactly the same profile, their index is 0, which is the
smallest (most similar) Bray-Curtis index. If two metagenomes share no functions or
taxa in their profile, their index is 1, representing the largest measure of Bray-Curtis
dissimilarity.

Because the Bray-Curtis index is used in the ordination, rather than the abun-
dances, it is difficult to recover the functions/taxa contributing to the separation
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of the metagenomes. Unlike PCA, the new variables are complex functions of the
original variables, not linear combinations.

NMDS is the most appropriate tool in IMG for reducing the dimensions of metage-
nomic functional/taxonomic profiles for comparative analysis. However, both PCA
and PCoA find a solution more quickly on some datasets.

NMDS in IMG is a data exploratory tool only, and may be used to form hypothe-
ses that can later be tested in properly designed statistical studies.
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